Continental Shelf-Wide Response of a Fish Assemblage to Rapid Warming of the Sea

Stephen D. Simpson,1, 4 Simon Jennings,2, 3 Mark P. Johnson,4 Julia L. Blanchard,5, 6 Pieter-Jan Schön,7 David W. Sims,8, 9 and Martin J. Genner1, 8
1 School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
2 The Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Lowestoft, Suffolk NR33 0HT, UK
3 School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
4 Martin Ryan Marine Science Institute, National University of Ireland, Galway, Galway, Ireland
5 Division of Biology, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
6 Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
7 Agri-Food and Biosciences Institute, Belfast BT9 5PX, Northern Ireland, UK
8 Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
9 School of Marine Sciences and Engineering, Marine Institute, University of Plymouth, Plymouth PL4 8AA, UK

Summary

Climate change affects marine biological processes from genetic to ecosystem levels [1–3]. Recent warming in the northeast Atlantic [4, 5] has caused distributional shifts in some fish species along latitudinal and depth gradients [6, 7], but such changes, as predicted by climate envelope models [8], may often be prevented because population movement requires availability of suitable habitat. We assessed the full impacts of warming on the commercially important European continental shelf fish assemblage using a data-driven Eulerian (grid-based) approach that accommodates spatial heterogeneity in ecological and environmental conditions. We analyzed local associations of species abundance and community diversity with climatic variables, assessing trends in 172 cells from records of >100 million individuals sampled over 1.2 million km² from 1980–2008. We demonstrate response to warming in 72% of common species, with three times more species increasing in abundance than declining, and find these trends reflected in international commercial landings. Profound reorganization of the relative abundance of species in local communities occurred despite decadal stability in the presence-absence of species. Our analysis highlights the importance of focusing on changes in species abundance in established local communities to assess the full consequences of climate change for commercial fisheries and food security.

Results and Discussion

Average global sea surface temperature (SST) increased by 0.7 °C over the last 100 years [4] and is predicted to rise by a further 1.5 °C to 2.6 °C by 2100 [9]. Marine ecosystems in the northeast Atlantic have warmed particularly rapidly, with mean sea temperatures in the North Sea and Celtic-Biscay Shelf regions increasing between 1982 and 2006 by 1.31 °C and 0.72 °C, respectively [5], four times faster than the global average [4]. Climate warming is affecting marine biological processes from the genetic to ecosystem level of organization, with implications for commercial fisheries and food security [1–3]. Significant progress has been made with identifying mechanisms by which climate change can affect fish population dynamics [10, 11] in describing shifts in the distributions of some fish species along latitudinal and depth gradients associated with climate change [6, 7, 12] and in developing climate envelope models to predict effects of climate change on future species distributions [8]. To date, however, macroecological analyses of the effects of climate change on marine fish assemblages have not accounted for constraints on distributional shifts due to population dependence on essential habitat, for example, favored substrates, appropriate predator and prey fields, and close proximity to nursery grounds, all of which are often unknown and difficult to quantify. Accommodation of spatial habitat heterogeneity when measuring climate impacts requires an alternative Eulerian (grid-based) approach of analyzing multiple local associations of species abundance and community diversity with climatic variables, controlling for depth and latitude and allowing for complex oceanography.

To investigate the effects of temperature variability on abundance of demersal species within the European continental shelf fish assemblage, we compiled and analyzed three decades of high-resolution fisheries-independent data. Our analysis spanned ~1.2 million km² of seabed (15° latitude × 25° longitude) and depths ranging from 5 to 592 m (mean = 75 m) and used data from 25,612 bottom-trawl sample hauls between 1980 and 2008 comprising >100 million fish from 177 species (or species groups; see Tables S1 and S2 available online). Temperature in this region has increased by 0.06 °C years⁻¹ on average at the surface and by 0.04 °C years⁻¹ on the seabed during the past 30 years (Figure 1A). Significant warming trends were evident in all 172 1° × 1° cells within the region and were most intense in the southern and eastern North Sea and the Irish Sea (Figure 1B). Trends in SST and sea-bottom temperature (SBT) correlated closely (Pearson’s r = 0.94, p < 0.001), whereas there was no significant correlation between regional rates of fishing mortality (another key driver of trends in fish abundance) and temperature (SST: r = −0.29, p = 0.16; SBT: r = −0.13, p = 0.56), which increased during the 1980s but declined thereafter [13] (Figure 1A).

Stability in Species Composition in Communities Despite Warming

An unsupervised Bayesian clustering analysis using species presence-absence data identified 12 biogeographic clusters across the studied shelf region (Figure 2A). The distribution of these clusters was generally stable between consecutive 5 year time periods, although during the period of the most rapid warming in the late 1980s (Figure 1A), more than twice as many cells changed in identity between 5-year periods.
compared with the 1990–2000s (Figure S1). In total, 53% of cells changed identity at some time during the 30 years, but only four of the 12 clusters changed significantly in latitudinal distribution. The western central North Sea and Channel assemblages moved southwards and the southeastern North Sea and Irish Sea clusters moved northwards. The spatial patterns of clusters were not driven by rare species (Figure S2) and were not associated with boundaries between different surveys. Instead, similar patterns were seen in regional analyses of data from single surveys (Figure S3). Thus, the general pattern on the European continental shelf is one of relative stability of overall species presence-absence, despite ubiquitous recent warming, a pattern that concurs with an earlier study of North Sea fish that found no overall consistent trend in latitudinal shifts among the 36 species studied [6]. Together, these analyses suggest that management zones based on biogeographical criteria [14] are acceptable on longer timescales than implied by reports of changing distributions due to recent warming [6].

Seventy-Two Percent of Common Species Are Responding to Warming
Observations of latitudinal shifts of some North Sea species over decadal timescales [6] raise questions about how changes in abundance relate to changes to species distributions. Across the region, we identified significant positive associations between fish annual abundance and temperature for 27 of the 50 most abundant species, whereas nine species showed significant declines in abundance relative to warm years (Figure 3; Table S2). The mean central latitude (derived from FishBase [15]) of the 27 species that increased in relative abundance with warm conditions across the region (44.5°C; Table S2) was significantly lower than the nine species that declined (55.2°C; t test [equal variances not assumed], Figure 1. Environmental Conditions on the European Continental Shelf
(A) Temperature and fishing trends. Annual temperature trends are calculated for the 172 1 × 1′ cells in this study and are shown with a linear trend (sea surface temperature [SST]: +0.06°C years⁻¹, R² = 0.67; sea-bottom temperature [SBT]: +0.04°C years⁻¹, R² = 0.50). Standardized fishing mortality is the mean estimate of multispecies fishing mortality for six subregions (North Sea, Eastern Channel, Western Channel, Celtic Sea, Irish Sea, Northwest Scotland) weighted by the spawning-stock biomass of each species that is assessed, as reported in International Council for the Exploration of the Sea working group reports and is shown with two linear trends (1982–1990: R² = 0.80; 1990–2007: R² = 0.81).

(B) Spatial variation in temperature trends during the study period (1980–2008), expressed as the slope of a fitted linear relationship between SST and year for each cell.

Figure 2. Assemblage Composition in Relation to Warming
(A) Twelve biogeographic clusters, identified by Bayesian analysis of presence-absence data, that maintained similar distributions over six 5-year periods. White cells in (A) and (B) indicate locations with insufficient fish-abundance data. (See Supplemental Information for further analysis of cell cluster changes [Figure S1], patterns based solely on common species [Figure S2], and patterns within single surveys [Figure S3].)

(B) Eighty-two percent of cells with a positive assemblage response to warming (percentage variation above random in beta-diversity trend explained by temperature). (See Figure S4 for comparison of trends with different temperature measures.)

(C) Mean assemblage response to temperature within 1′ × 1′ cells classified by intensity of warming. Letters above 95% confidence interval bars indicate significantly different categories (analysis of variance, F15,162 = 9.865, p < 0.001; subgroups identified using Tukey’s honestly significant difference test, α = 0.05).
Response of Fish Assemblage to Warming

Determined and predicting abundance responses of species to warming seas.

International Commercial Landings Reflect Abundance Changes

Although commercial landings data may give biased estimations of natural abundance [17], they give a valuable indication of the importance of species to the fishing industry. We investigated whether commercial landings [18] of species from northeast Atlantic fisheries reflected the abundance response of species to warming over the last 30 years derived from fisheries-independent data. There was a significant positive relationship between the trend in commercial landings (between 1980 and 2007) and the abundance response to temperature from survey data for the 33 species for which fisheries data were available (Pearson’s $r = 0.41$, $p = 0.018$; Figure 4C).

There was also a positive relationship between preferred temperature of species in surveys and landings trend ($r = 0.51$, $p = 0.002$) and a negative relationship between central latitudinal range and landings trend, with higher latitude species declining in landings ($r = -0.57$, $p = 0.001$). These results indicate that observed changes in survey data are mirrored in landings of commercial species.

Local-Scale Reorganization of Communities across the Region

Finally, we investigated whether changes in local assemblage composition have occurred despite stability in species presence-absence. We used principal component analysis (PCA) to reduce matrices of species abundance data for each year in each $1 ^\circ \times 1 ^\circ$ cell and used principal component 1 (PC1) as a single metric summarizing the major temporal trend in beta-diversity in subsequent analyses [19]. On average, PC1 captured 34% of variation within cells (range 20%–74%), and mean annual SST with a 1 year time lag explained more variation in PC1 than expected by chance in 143 of the 172 cells (Figure 2B). Annual SBT with a 1 year lag explained more variation than expected by chance in 131 cells. This stronger association of surface temperature with fish assemblage change may indicate that temperature exerts its effect via pelagic larval stages. At a $1 ^\circ \times 1 ^\circ$ resolution, neighboring cells often had contrasting assemblage responses to warming, implying differential effects of local habitat and/or interspecific ecological interactions [19]. Temperature-driven changes in assemblage composition were most pronounced in the southern and northern North Sea and the Irish Sea (Figure 2B), matching warming hotspots (Figure 1B). Assemblage-level change was significantly greater in cells that have experienced more intense warming (Figure 2C), and the reduced response...
for cells with lower levels of warming suggests resilience to warming to a threshold, beyond which change becomes inevitable and pronounced.

Conclusions

The results here are unique in exploring observed spatial heterogeneity in the response of the assemblage at a resolution that matches the one used in climate envelope models [20]. Our finding of stability in presence-absence of species over decadal periods, but significant temperature-driven responses in local species abundance and assemblage composition, suggests that climate envelope models based on species presence-absence alone will not predict the most ecologically and economically significant effects of climate change. Moreover, studies exploring shifts in central latitudes of species ranges using abundance data may miss important spatial variability and local responses. For example, poleward shifts in abundance, as would be expected under climate envelope scenarios, have been identified in only 13 of 36 studied species (36%) in the North Sea assemblage [6] despite significant and ubiquitous changes in temperature. In contrast, by analyzing local changes in abundance without assuming a range shift during warming and allowing for uneven abundance distributions linked to suitable habitat, we identified temperature-associated species-level changes in abundance in the North Sea in 39 of the 50 (78%) most common species (Figure 3; Table S2) and identified change in assemblage composition associated with warming in 93% of the North Sea cells (Figure 2B). This is consistent with many species responding in abundance without necessarily changing their spatial distributions of occurrence within the study region. The impact of these abundance changes to commercial fisheries was apparent, where landings of the nine species identified as declining in warm conditions (blue species in Figure 3, including haddock and cod) fell by a half during the period of this study, whereas landings of the 27 species identified as increasing in warm conditions (red species in Figure 3, including hake and dab) increased 2.5 times. For a given region, reorganization of the fishing fleet and management strategies will be required to ensure that the right species are targeted and harvested sustainably.

Our analysis highlights the value of data from high resolution large-scale surveys of species abundance in regions with a known history of climate change. The focus of many studies on the ecological effects of climate change in marine fish or fisheries has been on changing abundance distributions along latitudinal or depth gradients. Our analyses demonstrate that such distributional changes have been relatively benign on the European continental shelf during rapid warming of the sea over the last 30 years. Instead, there has been profound climate-driven reorganization of species abundance in established local communities over much of the shelf region, without spatial reorganization of species presence-absence. This result is important because local abundance changes in established fish communities have the greatest implications for both ecosystem function and societies dependent on marine natural resources. By contrast, over the timescale, studied changes in species ranges are arguably less important, because they result only from colonizations or extirpations that occur when species are necessarily scarce and below the abundances required for commercially viable exploitation. Thus, studies of distributional shifts can overlook ecologically and economically significant climate effects, except for rare examples of species range expansion coupled with large increases in abundance (e.g., [21]). The next challenge is to use this knowledge to develop effective indicators and predictive models to assess consequences of climate change for marine ecosystems and
Response of Fish Assemblage to Warming

5

fisheries. Such models will need to consider growth, reproduction, habitat use, essential habitat requirements, and location of nursery and spawning grounds if they are to make predictions about likely future impacts of warming on food web dynamics and fish-driven ecological processes. Moreover, because the northeast Atlantic assemblage is heavily exploited and species responses to fishing are influenced by body size [22], models are needed that integrate effects of warming and fishing. This gained understanding will be valuable for predicting future exploitable resources and crucial for determining appropriate harvesting and conservation strategies at relevant spatial scales.

Experimental Procedures

Data were collated from 11 demersal trawl surveys conducted over 30 years by European fisheries agencies in 218 1° × 1° cells (Table S1). The combined data comprised 25,612 hauls and an estimated 105,304,825 fish from 177 species or taxa in 172 cells. Bathymetry data were obtained from General Bathymetric Chart of the Oceans [23]. Modeled SST [24] and SBT [25] data used to describe warming trends correlated closely with in situ measurements (Pearson’s correlation; SST: n = 5,666, r = 0.94, p < 0.001; SBT: n = 2,789, r = 0.78, p < 0.0001) from the 22% and 11% of hauls for which they were available, respectively. International Council for the Exploration of the Sea stock assessment data [26] were used to calculate weighted multispecies estimates of fishing mortality [27] for each International Council for the Exploration of the Seas region. Unsupervised Bayesian clustering [28] of presence-absence data for six 1 year time periods identified biogeographically distinct subassemblages. Abundance responses of species to temperature were calculated for the 50 most abundant species (comprising 99.9% of individuals sampled) as the mean correlation coefficient for all cells between catch and temperature data. For each species, we determined biogeographic affinities from within our data set and using the central latitudinal range from FishBase [15] and obtained maximum body size from all records in the trawl survey database (Table S2). Preferred temperature and depth for each species were derived using frequency of occurrence across the data set. We defined an assemblage-level response to temperature for each 1° × 1° cell as the association above that expected by chance between PC1 from a PCA of a matrix of log abundance (per species per year) that associated with mean annual SST from the previous year. This was identified as the best predictor from 18 potential drivers for each cell (SST and SBT; annual, summer, and winter; 1–3 year time lag; Figure S4).

Supplemental Information

Supplemental Information includes four figures, two tables, and Supplemental Experimental Procedures and can be found with this article online at doi:10.1016/j.cub.2011.08.016.

Acknowledgments

We thank staff of the Centre for Environment Fisheries and Aquaculture Science UK, Agri-Food and Biosciences Institute Northern Ireland, Marine Scotland, International Council for the Exploration of the Sea, and the Marine Biological Association UK who collected and provided fish and environmental survey data and Jason Holt (Proudman Oceanographic Laboratory) for providing modeled SBT data. We thank two anonymous referees for valuable comments. This work was supported by a Natural Environment Research Council (NERC)/Department for Environment Food and Rural Affairs (Defra) Sustainable Marine Bioresources program award (NE/F001878/1), with additional support from Great Western Research (M.J.G.), Defra (J.L.B. and S.J.), NERC Oceans 2025 (D.W.S. and M.J.G.), The Worshipful Company of Fishmongers (D.W.S.), and a Marine Biological Association Senior Research Fellowship (D.W.S.).

Received: July 5, 2011

Revised: August 5, 2011

Accepted: August 5, 2011

Published online: September 15, 2011

References

Supplemental Information

Continental Shelf-Wide Response of a Fish Assemblage to Rapid Warming of the Sea

Stephen D. Simpson, Simon Jennings, Mark P. Johnson, Julia L. Blanchard, Pieter-Jan Schön, David W. Sims, and Martin J. Genner

Supplemental Inventory

1. Supplemental Figures and Tables

 Figure S1, related to Figure 2A
 Figure S2, related to Figure 2A
 Figure S3, related to Figure 2A
 Figure S4, related to Figures 2B and 2C and Figure 4
 Table S1
 Table S2

2. Supplemental Experimental Procedures

3. Supplemental References
Figure S1, Related to Figure 2A.
Distributions of 12 biogeographic clusters identified by Bayesian analysis of presence-absence data, showing the cells and the percentage of total cells that changed between consecutive 5-year periods in the panels on the right.
Figure S2, Related to Figure 2A.
Structuring of nine biogeographic clusters, identified by Bayesian analysis of presence-absence data for persistent species. Analysis included only species that occurred in 50% or more of the hauls in a cell in a 5-year block.
Figure S3. Structuring of Biogeographic Clusters, Identified by Bayesian Analysis of Presence-Absence Data from Single Surveys, Related to Figure 2A

(A) Eight clusters identified within the North Sea spring International Bottom-Trawl Survey.
(B) Four clusters identified within the North Sea autumn Cefas survey.
(C) Four clusters identified within the Celtic Sea Cefas survey.
(D) Two clusters identified within the NW Scotland spring FRS survey.

This analysis demonstrates that geographically coherent clusters occur within single surveys, matching those from the analysis of all 11 surveys combined, rather than being driven by differences between surveys, and that overlapping surveys (A & B) produce similar qualitative patterns despite being conducted by multiple agencies in different seasons.
Figure S4, Related to Figures 2B and 2C and Figure 4.
Strength of correlation of the first axis of community assemblage-level change (PC1) with time series for different temperature metrics. Mean ± se for 252 separate time series, which for the 18 different temperature measures were restricted in duration to include all the same years, enabling direct comparison of association. Sea-surface temperature with a one-year time lag (circled in red) showed the closest association and was used for subsequent species- and community-level analyses.
Table S1. Details of the 11 Fisheries Surveys Used in This Study, Showing Numbers of Cells and Trawls Used for the Final Analysis

<table>
<thead>
<tr>
<th>Survey</th>
<th>Season</th>
<th>Gear</th>
<th># Years</th>
<th>Years covered</th>
<th># 1º Cells</th>
<th># Trawls</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFBI Irish Sea Q3</td>
<td>autumn</td>
<td>otter: rockhopper</td>
<td>16</td>
<td>1992-2007</td>
<td>6</td>
<td>726</td>
</tr>
<tr>
<td>AFBI Irish Sea Q1</td>
<td>spring</td>
<td>otter: rockhopper</td>
<td>17</td>
<td>1992-2008</td>
<td>6</td>
<td>742</td>
</tr>
<tr>
<td>CEFAS Eastern Channel</td>
<td>summer</td>
<td>beam</td>
<td>19</td>
<td>1989-2007</td>
<td>9</td>
<td>1775</td>
</tr>
<tr>
<td>CEFAS Irish Sea</td>
<td>autumn</td>
<td>beam</td>
<td>18</td>
<td>1990-2007</td>
<td>13</td>
<td>2038</td>
</tr>
<tr>
<td>CEFAS North Sea</td>
<td>autumn</td>
<td>otter: Granton pre ’92, then GOV</td>
<td>26</td>
<td>1982-2007</td>
<td>63</td>
<td>1804</td>
</tr>
<tr>
<td>CEFAS Western Channel</td>
<td>autumn</td>
<td>beam</td>
<td>18</td>
<td>1989-2006</td>
<td>4</td>
<td>1100</td>
</tr>
<tr>
<td>FRS NW Scotland Q1</td>
<td>spring</td>
<td>otter: GOV</td>
<td>24</td>
<td>1985-2008</td>
<td>22</td>
<td>1024</td>
</tr>
<tr>
<td>FRS NW Scotland Q4</td>
<td>winter</td>
<td>otter: GOV</td>
<td>18</td>
<td>1990-2007</td>
<td>18</td>
<td>580</td>
</tr>
<tr>
<td>ICES IBTS North Sea Q1</td>
<td>spring</td>
<td>otter: GOV</td>
<td>29</td>
<td>1980-2008</td>
<td>96</td>
<td>11341</td>
</tr>
<tr>
<td>MBA Western Channel</td>
<td>throughout year</td>
<td>otter trawls</td>
<td>31</td>
<td>1967-’79, ’83-’94, 2001-’07</td>
<td>1</td>
<td>427</td>
</tr>
<tr>
<td>Common name</td>
<td>Scientific Name</td>
<td>Family</td>
<td>Centre of latitudinal range (°N)</td>
<td>Maximum body size (mm)</td>
<td>Max size in database (mm)</td>
<td>Preferred depth (m)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>red mullet</td>
<td>Mullus surmuletus</td>
<td>Mullidae</td>
<td>38 400 420 80 11.6</td>
<td>-0.29</td>
<td>-0.27</td>
<td>-0.31</td>
</tr>
<tr>
<td>grey mullet</td>
<td>Mullus surmuletus</td>
<td>Mullidae</td>
<td>38 400 420 80 11.6</td>
<td>-0.29</td>
<td>-0.27</td>
<td>-0.31</td>
</tr>
<tr>
<td>splendent eel</td>
<td>Anguilla anguilla</td>
<td>Anguillidae</td>
<td>38 400 420 80 11.6</td>
<td>-0.29</td>
<td>-0.27</td>
<td>-0.31</td>
</tr>
<tr>
<td>long-rough dab</td>
<td>Pomatoschistus longiceps</td>
<td>Pomatoschistidae</td>
<td>38 400 420 80 11.6</td>
<td>-0.29</td>
<td>-0.27</td>
<td>-0.31</td>
</tr>
<tr>
<td>small-spotted catshark</td>
<td>Scyliorhinus canicula</td>
<td>Scyliorhinidae</td>
<td>38 400 420 80 11.6</td>
<td>-0.29</td>
<td>-0.27</td>
<td>-0.31</td>
</tr>
<tr>
<td>John dory</td>
<td>Zeus faber</td>
<td>Trachinidae</td>
<td>38 400 420 80 11.6</td>
<td>-0.29</td>
<td>-0.27</td>
<td>-0.31</td>
</tr>
</tbody>
</table>

Note:
- * denotes species that did not vary significantly with temperature.
- x denotes species that were not present in a sub-region.
- * denotes mean responses that are significant when n>20 but not after Holm's sequential Bonferroni correction.

Table S2. Extended Matrix of Species-Level Abundance Responses to Warming Showing Traits, Life-History Parameters, and Values of Significant Indices (Mean Correlations for All Cells within a Geographic Area)
Supplemental Experimental Procedures
Survey Data
We compiled data from 11 demersal surveys conducted by the Centre for Environment Fisheries and Aquaculture Science UK (Cefas), Agri-Food and Biosciences Institute Northern Ireland (AFBI), Fisheries Research Services Scotland (FRS, now Marine Scotland), International Council for the Exploration of the Sea (ICES) and the Marine Biological Association UK (MBA) between 1980 and 2008. Individual hauls covered an area of 15° latitude and 25° longitude and were allocated to a grid of 218 1x1° cells (Table S1). Eighteen pelagic species were removed prior to analysis (of these, >99% by numbers were sprat (Sprattus sprattus), herring (Clupea harengus), mackerel (Scomber scombrus) and horse mackerel (Trachurus trachurus)) since they are more likely to be captured during the shooting and retrieving of nets than during the period when the net is in contact with the seabed [7], and data from 1x1° cells where <70% of the years were sampled within a time series were removed, as were very rare trawls with misreported locations (<0.01% of hauls). The resulting dataset consisted of 25,612 hauls comprising an estimated 105,304,825 fish from 177 species/taxa in 172 1x1° cells.

Environmental and Fishing Data
We obtained bathymetry data from the GEBCO Digital Atlas [S1], Sea-Surface Temperature (SST) data from the UK Meteorological Office Hadley Centre global ocean surface temperature database (HadISST1.1) [S2] and Sea-Bottom Temperature (SBT) data from the Proudman Oceanographic Laboratory [S3]. These SST and SBT data products closely matched in situ measurements taken during survey hauls in the 22% and 11% of hauls for which they were available respectively (Pearson’s correlation; SST: n = 5666, r = 0.94, P < 0.001; SBT: n = 2789, r = 0.78, P < 0.001). The weaker correlation for the SBT data was largely due to 270 hauls for which the modelled SBT data were >5°C below the in situ measurements. These hauls were predominantly late summer (mean late-August, median month September), so are likely to be for cells where the thermocline persisted slightly later than was predicted by the model. If excluded from the analysis, the correlation for the remaining 2519 cells was greatly improved (r = 0.91, P < 0.001), suggesting that the SBT data product generally provided a good prediction of local conditions. Data from both sources were provided as monthly means for 1x1° cells, from which we calculated winter (January-March), summer (July-September) and annual mean temperatures. We used ICES stock assessment data [S4] for demersal species in our dataset to calculate standardised multispecies estimates of fishing mortality weighted by spawning-stock biomass [S5] for each ICES region. We used FAO commercial landings data [S6] to calculate catch (tonnage) per species for the northeast Atlantic fishing area during each decade. The trend in landings was calculated for each species as the slope of the line through the decadal means of the log (x+1) annual landings for the 1980s, 1990s and 2000s.

Dealing with Issues of Variable Catchability Between Surveys
For some species, it is likely that estimates of abundance in the dataset vary not only due to spatial and temporal factors, but also due to differences in catchability between the surveys used in our analyses. This issue perhaps explains why previous studies have focussed on data from a single dataset, at the cost of determining a more regional understanding of the effects of recent warming. Potential discrepancies may be caused by surveys being conducted in different seasons, with contrasting gear types, or the counting and identification being conducted by different teams of observers. We addressed this issue of variable catchability explicitly throughout our analyses.
For assessment of overall changes to species occurrence, species presence-absence was quantified over 5-year periods. This was used in place of estimates of abundance, which would be more likely to vary due to season and gear. Additionally, the resultant spatial patterns of “biogeographic” clusters over time were confirmed by repeating analyses independently using data from each of the four surveys with greatest spatial coverage (>20 1x1° cells).

For assessment of species- and assemblage-level responses, we used either a Eulerian (1x1° cell grid-cell) based approach, or derived indices robust to differences in the magnitude of catches. In theory, if a fish population is declining or increasing, even if the species differs in susceptibility to different fishing gears, we expect identical temporal correlation coefficients of abundance with a predictor variable (for example temperature). Thus, by generating this coefficient for each cell in each different survey independently, the derived indices are standardised both within and between surveys. Similarly, we can use this approach of using a derived correlation coefficient from each cell in each different survey separately to quantify the change in local assemblage composition explained by a predictor variable (Assemblage-Level Responses below).

Spatial Patterns of Species Presence-Absence

To identify biogeographic clusters and to test for temporal shifts in their distributions we employed an unsupervised Bayesian clustering approach [S7] to determine the most likely number of clusters, with presence-absence data for six 5-year time periods analysed in a single analysis to allow direct comparison of the distributions of clusters between time periods. Additionally, to ensure that the distribution of clusters was not driven by differences in data quality among surveys, we repeated this multiple-survey analysis excluding species with a frequency-of-occurrence in hauls of less than 50%. Further, to ensure that the clusters were not simply demarcations of different surveys, we analysed presence-absence data from the four geographically large surveys (>20 1x1° cells) separately to test whether clusters persisted in these more localised, but methodologically standardised, single datasets.

Species-Level Responses

To characterise the abundance response of species to temperature, we used Pearson’s correlations to quantify the association of mean annual log (x+1) abundance with temperature data for each 1x1° cell. Separate analyses were conducted on data from each survey in cells where surveys overlapped, and a mean species response was calculated for such cells. We focussed on the 50 most abundant species which comprised 99.9% of all individuals sampled, since low abundance compromises the power to detect population changes in surveys [S8]. In parallel with our assemblage-level analysis (below), we used mean annual SST from the previous year for the temperature data (see Figure S4 for a comparison of associations of community-level change with different temperature time series). One-sample t-tests were used to identify species where the sub-regional and regional correlations were significantly different to zero, indicating a positive or negative relationship with temperature; significance was determined using both α = 0.05 and adjusted α-values using Holm’s sequential Bonferroni correction [S9]. Finally, we derived a species-level index of response in abundance to temperature, using the mean correlation coefficient for all cells where a species was present, which was positive if a species was more abundant in warm years and negative where a species declined.

For each species biogeographic affinities were determined using the central latitudinal range from FishBase [S10] (Table S2), which provides information on species distributions beyond the range of this study but may be susceptible to
variable reporting by different countries, and also calculated the central latitudinal tendency of each species within the compiled trawl dataset. These two measures of latitudinal preference were significantly associated when compared for the 50 most abundant species in the database (Pearson’s $r = 0.64$, $P < 0.001$). The maximum body size was determined for each species from length records in our compiled data. Where the maximum size in the dataset was >1.2 times greater than the maximum length in FishBase, the length-distribution of the species was analysed, and if the maximum was clearly an outlier (probably due to misidentification or erroneous recording), the largest credible size was used. Central latitudinal tendency, and also preferred temperature and depth, were derived for each species from the dataset using frequency-of-occurrence (foo) in each cell and year rather than abundance, combined with cell latitude and measures of in situ temperature and depth. E.g. for preferred temperature of a species:

$$T_{\text{pref}} = \sum_{\text{survey_cell_year}=1}^{\text{survey_cell_year}=n} \frac{\text{foo} \times \text{temp}_{\text{cell_year}}}{\text{foo}}$$

Thus the estimated parameters account for different numbers of hauls and gears used in different cells across the dataset.

Assemblage-Level Responses

We derived an assemblage-level response to warming for each cell by calculating the association between trends in the reorganisation of community composition with trends in temperature above the level of association that could be expected by chance. Following previous studies [S11-13], we used annual mean log ($x+1$)-transformed catch data for each species in each cell, so each year was a single sample, and analysed data from overlapping surveys separately to avoid issues of variable catchability of species due to differences in the trawl gears employed and the season of sampling in different surveys. Data were reduced using Principal Component Analysis from 177 taxa to the major axis of variation (PC1), which captured a mean of 34.1% of variation in the data (236 survey/cell PCAs, range: 20.3-73.6%). Although PC2 captured a mean of 18.3% of the variation (range 6.9-33.2%), we focussed our analysis on the main trend captured in the PC1 scores. We compared PC1 scores for each cell in each survey with SST and SBT data, using annual, summer and winter means with a time lag of 1-3 years (Figure S4). To determine the strength of the influence of temperature in each cell, the R^2_{actual}-value (derived from r, the Pearson’s correlation coefficient for PC1 with temperature) was compared with the mean R^2_{random}-value from 100 randomisations of the same data for each cell in each survey. Where the difference between R^2_{actual} and R^2_{random} is positive, this represents the amount of variation in PC1 above random that associates with the temperature trend. When a given cell was sampled by more than one survey, a mean measure of assemblage response to temperature was calculated for the cell using values calculated from data from each survey separately, thereby avoiding direct comparison of catches from different gears or seasons.
Supplemental References

